ADE7953
REACTIVE POWER CALCULATION
Reactive power is defined as the product of the voltage and
current waveforms when one of these signals is phase shifted
by 90°. The resulting waveform is called the instantaneous
reactive power signal.
Data Sheet
The ADE7953 reactive power measurement is stable over the
full frequency range. The dc component of the instantaneous
reactive power signal is then extracted by a low-pass filter to
obtain the reactive power information.
Equation 16 provides an expression for the instantaneous
reactive power signal in an ac system when the phase of the
current channel is shifted by +90°.
RP(t) = V(t) × I ’ (t)
RP(t) = VI × sin( θ ) + VI × sin(2 ωt + θ)
(16)
(17)
The frequency response of the LPFs in the reactive power signal
paths is identical to the frequency response of the LPFs used in
the active power calculation. Because the LPF does not have an
ideal “brick wall” frequency response, the reactive power signal
has some ripple associated with it. This ripple is sinusoidal and
has a frequency equal to twice the line frequency. Because the
V(t) =
I(t) =
2 × V × sin( ωt + θ )
2 × I × sin( ωt )
(18)
(19)
ripple is sinusoidal in nature, it is removed when the reactive
power signal is integrated to compute the reactive energy (see
the Reactive Energy Calculation section).
2 × I × sin ? ? ωt +
π ?
I ’ (t) = ? (20)
? 2 ?
where:
V is the rms voltage.
I is the rms current.
θ is the phase difference between the voltage and current channel.
The average reactive power over an integral number of line
cycles (n) is given by the expression in Equation 21.
The ADE7953 computes the reactive power simultaneously
on Current Channel A and Current Channel B and stores the
resulting measurements in the AVAR (Address 0x214 and
Address 0x314) and BVAR (Address 0x215 and Address 0x315)
registers, respectively. With full-scale inputs, the expected
reading in the AVAR and BVAR registers is approximately
4862401 LSBs (decimal).
The reactive power registers are updated at a rate of 6.99 kHz
and can be read using the waveform sampling mode (see the
RP =
1
nT
nT
∫ RP ( t ) dt = VI × sin( θ )
0
(21)
SIGN OF REACTIVE POWER CALCULATION
where:
RP is the reactive power.
T is the line cycle period.
The reactive power is equal to the dc component of the
instantaneous reactive power signal (RP(t) in Equation 16).
This relationship is used to calculate reactive power in the
ADE7953 . The signal chain for the reactive power and energy
calculations in the ADE7953 is shown in Figure 51.
The instantaneous reactive power signal RP(t) is generated by
multiplying the current signal and the voltage signal. Simulta-
neous calculations are performed using Current Channel A and
Current Channel B. The multiplication is performed over the full
1.23 kHz bandwidth and results in a reactive power measurement
that includes all harmonics included in this range.
xVARGAIN
CURRENT
The reactive power measurement in the ADE7953 is a signed
calculation. If the current waveform is leading the voltage wave-
form, the reactive power is negative. Negative reactive power
indicates a capacitive load. If the current waveform is lagging
the voltage waveform, the reactive power is positive. Positive
reactive power indicates an inductive load. The ACCMODE
register (Address 0x201 and Address 0x301) includes two sign
indication bits that show the sign of the reactive power of
Current Channel A (VARSIGN_A) and Current Channel B
(VARSIGN_B). See the Sign Indication section for more
information.
CHANNEL
A OR B
VOLTAGE
REACTIVE
POWER
ALGORITHM
+
+
48 0
INTERNAL
ACCUMULATION
23
RENERGYx
0
CHANNEL
FIXED INTERNAL
REACTIVE
xVAROS
THRESHOLD
POWER
SIGNAL
Figure 51. Reactive Energy Signal Chain
Rev. B | Page 28 of 72
相关PDF资料
EVAL-ADF4002EBZ1 BOARD EVAL FOR ADF4002
EVAL-ADG788EBZ BOARD EVALUATION FOR ADG788
EVAL-ADM1021AEB BOARD EVAL FOR ADM1021
EVAL-ADM1023EB BOARD EVAL FOR ADM1023
EVAL-ADM1031EB BOARD EVAL FOR ADM1031
EVAL-ADM1062TQEBZ BOARD EVALUATION FOR ADM1062TQ
EVAL-ADM1075CEBZ BOARD EVAL FOR ADM1075
EVAL-ADM1087EBZ BOARD EVALUATION FOR ADM1087
相关代理商/技术参数
EVAL-ADF4001EBZ2 制造商:Analog Devices 功能描述:Evaluation Board For Pll Frequency Synthesizer 制造商:Analog Devices 功能描述:ADF4001 PLL SYNTHESIZER EVAL BOARD
EVAL-ADF4002EB1 制造商:Analog Devices 功能描述:EVAL BOARD - Bulk
EVAL-ADF4002EBZ1 功能描述:BOARD EVAL FOR ADF4002 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 产品培训模块:Obsolescence Mitigation Program 标准包装:1 系列:- 主要目的:电源管理,电池充电器 嵌入式:否 已用 IC / 零件:MAX8903A 主要属性:1 芯锂离子电池 次要属性:状态 LED 已供物品:板
EVAL-ADF4007EBZ1 功能描述:BOARD EVALUATION FOR ADF4007EB1 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:PSoC® 主要目的:电源管理,热管理 嵌入式:- 已用 IC / 零件:- 主要属性:- 次要属性:- 已供物品:板,CD,电源
EVAL-ADF4106EB1 制造商:Analog Devices 功能描述:PLL, Frequency Synthesizer
EVAL-ADF4106EBZ1 功能描述:BOARD EVAL FOR ADF4106 RoHS:是 类别:编程器,开发系统 >> 评估演示板和套件 系列:- 标准包装:1 系列:PSoC® 主要目的:电源管理,热管理 嵌入式:- 已用 IC / 零件:- 主要属性:- 次要属性:- 已供物品:板,CD,电源
EVAL-ADF4108EB1 制造商:AD 制造商全称:Analog Devices 功能描述:PLL Frequency Synthesizer
EVAL-ADF4108EBZ1 制造商:Analog Devices 功能描述:Evaluation Board For ADF4108 制造商:Analog Devices 功能描述:ADF4108 Evaluation Board 制造商:Analog Devices 功能描述:ADF4108, PLL FREQUENCY SYNTHESIZER, EVAL BOARD; Silicon Manufacturer:Analog Devices; Silicon Core Number:ADF4108; Kit Application Type:Clock & Timing; Application Sub Type:PLL Frequency Synthesizer; MCU Supported Families:ADF4108 ;RoHS Compliant: Yes